The NILO-CMFD Method for Iteratively Solving Coupled Neutron Transport–Thermal Hydraulics Problems

نویسندگان

چکیده

The coarse-mesh finite difference (CMFD) method is commonly used to accelerate the iterative convergence of single-physics neutron transport problems. For multiphysics problems, cross sections depend on temperature and density, both which fission heat source; resulting nonlinear feedback can significantly degrade performance CMFD even cause instability. In this paper, we propose, for a class one-dimensional (1-D) model new nonlinearly implicit low-order (NILO) (NILO-CMFD) acceleration improve CMFD-based methods solving loosely coupled Our numerical testing Fourier analysis show that 1-D NILO-CMFD achieves same rapid rate

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

On the iteratively regularized Gauss-Newton method for solving nonlinear ill-posed problems

The iteratively regularized Gauss-Newton method is applied to compute the stable solutions to nonlinear ill-posed problems F (x) = y when the data y is given approximately by yδ with ‖yδ − y‖ ≤ δ. In this method, the iterative sequence {xk} is defined successively by xk+1 = x δ k − (αkI +F (xk)F (xk)) ( F (xk) ∗(F (xk)− y) +αk(xk − x0) ) , where x0 := x0 is an initial guess of the exact solutio...

متن کامل

Non-polynomial Spline Method for Solving Coupled Burgers Equations

In this paper, non-polynomial spline method for solving Coupled Burgers Equations are presented. We take a new spline function. The stability analysis using Von-Neumann technique shows the scheme is unconditionally stable. To test accuracy the error norms 2L, L are computed and give two examples to illustrate the sufficiency of the method for solving such nonlinear partial differential equation...

متن کامل

Analytical Approaches for Solving Neutron Transport Problems

The exact solutions for stationary and non-stationary neutron transport equations corresponding to various source functions are presented. The semi-infinite medium is considered to have a specular-reflecting boundary with angular dependent externally-incident flux. Some adjustments were made to agree the neutron transport theory with astrophysical applications.

متن کامل

Iteratively Solving Linear Inverse Problems under General Convex Constraints

We consider linear inverse problems where the solution is assumed to fulfill some general homogeneous convex constraint. We develop an algorithm that amounts to a projected Landweber iteration and that provides and iterative approach to the solution of this inverse problem. For relatively moderate assumptions on the constraint we can always prove weak convergence of the iterative scheme. In cer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nuclear Science and Engineering

سال: 2022

ISSN: ['0029-5639', '1943-748X']

DOI: https://doi.org/10.1080/00295639.2022.2112900